Comparison with Similar Reports

Smart Weapons Market by Product (Missiles, Munitions, Guided Projectile, Guided Rocket, Guided Firearms), platform (Air, Land, Naval), Technology (Las...

Publisher:        MarketsandMarkets

# of Pages:        201

Rating: 

1 User License $

Publication Date:  August, 2016

Price:       $ / User License




TABLE OF CONTENTS

1 INTRODUCTION 20
1.1 OBJECTIVES OF THE STUDY 20
1.2 MARKET DEFINITION 20
1.3 STUDY SCOPE 21
1.3.1 MARKETS COVERED 21
1.3.2 YEARS CONSIDERED FOR THE STUDY 21
1.4 CURRENCY & PRICING 22
1.5 DISTRIBUTION CHANNEL PARTICIPANTS 22
1.6 LIMITATIONS 22
1.7 MARKET STAKEHOLDERS 22
2 RESEARCH METHODOLOGY 23
2.1 RESEARCH DATA 23
2.1.1 SECONDARY DATA 24
2.1.1.1 Key data from secondary sources 25
2.1.2 PRIMARY DATA 25
2.1.2.1 Key data from primary sources 25
2.1.2.2 Key industry insights 26
2.1.2.3 Breakdown of primaries 26
2.2 FACTOR ANALYSIS 27
2.2.1 INTRODUCTION 27
2.2.2 DEMAND-SIDE ANALYSIS 27
2.2.2.1 Rising incidences of regional disputes, terrorism, and political conflicts 27
2.2.2.2 Increase in military spending of developing countries 28
2.2.3 SUPPLY-SIDE ANALYSIS 29
2.2.3.1 Increase in supply of autonomous weapons 29
2.3 MARKET SIZE ESTIMATION 29
2.3.1 BOTTOM-UP APPROACH 30
2.3.2 TOP-DOWN APPROACH 30
2.4 MARKET BREAKDOWN & DATA TRIANGULATION 32
2.5 RESEARCH ASSUMPTIONS 33
3 EXECUTIVE SUMMARY 34
4 PREMIUM INSIGHTS 38
4.1 ATTRACTIVE OPPORTUNITIES IN THE SMART WEAPONS MARKET, 2016-2021 38
4.2 SMART WEAPONS MARKET, BY TECHNOLOGY 38
4.3 LIFE CYCLE ANALYSIS, BY REGION 39
4.4 SMART WEAPONS MARKET FOR ASIA-PACIFIC 40
4.5 GLOBAL SMART WEAPONS MARKET, BY REGION 41
5 MARKET OVERVIEW 42
5.1 INTRODUCTION 42
5.2 MARKET SEGMENTATION 42
5.2.1 SMART WEAPONS MARKET: BY PRODUCT 43
5.2.2 SMART WEAPONS MARKET, BY TECHNOLOGY 43
5.2.3 SMART WEAPONS MARKET, BY PLATFORM 44
5.2.4 SMART WEAPONS MARKET, BY REGION 44
5.3 MARKET DYNAMICS 45
5.3.1 DRIVERS 45
5.3.1.1 Rising need for precision munitions 45
5.3.1.2 Reducing logistics burden 46
5.3.1.3 Modernization and replenishment programs 46
5.3.2 RESTRAINTS 46
5.3.2.1 Arms transfer regulations 46
5.3.2.2 Declining defense budgets of advanced economies 47
5.3.3 OPPORTUNITIES 48
5.3.3.1 Growing demand in emerging nations 48
5.3.3.2 Standardization of weapons 48
5.3.3.3 Risk from terrorism 49
5.3.4 CHALLENGES 49
5.3.4.1 Weapon integration 49
6 INDUSTRY TRENDS 50
6.1 INTRODUCTION 50
6.2 VALUE CHAIN ANALYSIS 50
6.3 STRATEGIC BENCHMARKING 51
6.3.1 SMART WEAPONS MARKET RETENTION THROUGH IMPORTANT CONTRACTS 51
6.4 TECHNOLOGY TRENDS 53
6.4.1 SWARMBOATS, SMART BOMBS, AND HYPERSONIC GUNS 53
6.4.2 TARGET LOCKING TECHNOLOGY 53
6.4.3 INFRARED TECHNOLOGY 53
6.4.4 NETWORK-ENABLED WEAPONS 54
6.4.5 HYBRID GUIDANCE SYSTEMS 54
6.4.6 MILLIMETER WAVE TECHNOLOGY 54
6.4.7 SELF GUIDED FIREARM 54
6.4.8 LIGHT WEIGHT AND SMALL SIZED WEAPON SEEKER TECHNOLOGY 54
6.5 INNOVATION & PATENT REGISTRATIONS 55
6.6 KEY TREND ANALYSIS 56
7 SMART WEAPONS MARKET, BY PLATFORM 57
7.1 INTRODUCTION 58
7.2 LAND-BASED 59
7.3 AIRBORNE 60
7.4 NAVAL 60
8 SMART WEAPONS MARKET, BY PRODUCT 62
8.1 INTRODUCTION 63
8.2 MISSILES 64
8.2.1 ANTI-TANK MISSILES 65
8.2.2 AIR-TO-AIR & AIR-TO-SURFACE MISSILES 66
8.2.3 ANTI-SHIP & ANTI-SUBMARINE MISSILES 66
8.3 MUNITIONS 67
8.3.1 GUIDED BOMBS 67
8.3.2 TARGET PODS 68
8.4 GUIDED ROCKETS 68
8.4.1 ANTI-TANK & TACTICAL 69
8.4.2 AIR-TO-AIR & AIR-TO-SURFACE 69
8.4.3 ANTI-SUBMARINE 69
8.5 GUIDED PROJECTILES 69
8.5.1 GUIDED MORTAR ROUNDS 70
8.5.2 GUIDED ARTILLERY SHELLS 70
8.6 GUIDED FIREARMS 71
8.6.1 SMALL SMART WEAPONS 71
8.6.2 SHOULDER-FIRED WEAPONS 72
8.6.3 SMART GUNS WEAPONS 72
9 SMART WEAPONS MARKET, BY TECHNOLOGY 73
9.1 INTRODUCTION 74
9.2 INFRARED 75
9.2.1 IIR HOMING 76
9.2.2 IR HOMING 76
9.3 LASERS 77
9.4 GLOBAL POSITIONING SYSTEM (GPS) 77
9.5 RADAR 78
9.5.1 ACTIVE HOMING 79
9.5.2 PASSIVE HOMING 79
9.6 OTHERS 80
10 REGIONAL ANALYSIS 81
10.1 INTRODUCTION 82
10.2 NORTH AMERICA 82
10.2.1 BY PRODUCT 83
10.2.2 BY PLATFORM 84
10.2.3 BY TECHNOLOGY 84
10.2.4 BY COUNTRY 85
10.2.4.1 U.S. 85
10.2.4.1.1 By product 86
10.2.4.1.1.1 By missiles 86
10.2.4.1.1.2 By munitions 87
10.2.4.1.1.3 By guided projectiles 87
10.2.4.1.1.4 By guided rockets 87
10.2.4.1.1.5 By guided firearms 88
10.2.4.1.2 By platform 88
10.2.4.2 CANADA 89
10.2.4.2.1 By product 89
10.2.4.2.1.1 By missiles 89
10.2.4.2.1.2 By munitions 90
10.2.4.2.1.3 By guided projectiles 90
10.2.4.2.1.4 By guided rockets 90
10.2.4.2.1.5 By guided firearms 91
10.2.4.2.2 By platform 91
10.3 EUROPE 91
10.3.1 BY PRODUCT 92
10.3.2 BY PLATFORM 93
10.3.3 BY TECHNOLOGY 93
10.3.4 BY COUNTRY 94
10.3.4.1 U.K. 94
10.3.4.1.1 By product 95
10.3.4.1.1.1 By missiles 95
10.3.4.1.1.2 By munitions 96
10.3.4.1.1.3 By guided projectiles 96
10.3.4.1.1.4 By guided rockets 96
10.3.4.1.1.5 By guided firearms 97
10.3.4.1.2 By platform 97
10.3.4.2 GERMANY 98
10.3.4.2.1 By product 98
10.3.4.2.1.1 By missiles 99
10.3.4.2.1.2 By munitions 99
10.3.4.2.1.3 By guided projectiles 99
10.3.4.2.1.4 By guided rockets 100
10.3.4.2.1.5 By guided firearms 100
10.3.4.2.2 By platform 101
10.3.4.3 FRANCE 101
10.3.4.3.1 By product 102
10.3.4.3.1.1 By missiles 102
10.3.4.3.1.2 By munitions 103
10.3.4.3.1.3 By guided projectiles 103
10.3.4.3.1.4 By guided rockets 103
10.3.4.3.1.5 By guided firearms 104
10.3.4.3.2 By platform 104
10.3.4.4 RUSSIA 105
10.3.4.4.1 By product 105
10.3.4.4.1.1 By missiles 106
10.3.4.4.1.2 By munitions 106
10.3.4.4.1.3 By guided projectiles 106
10.3.4.4.1.4 By guided rockets 107
10.3.4.4.1.5 By guided firearms 107
10.3.4.4.2 By platform 107
10.4 ASIA-PACIFIC 108
10.4.1 BY PRODUCT 109
10.4.2 BY PLATFORM 110
10.4.3 BY TECHNOLOGY 110
10.4.4 BY COUNTRY 111
10.4.4.1 China 111
10.4.4.1.1 By product 112
10.4.4.1.1.1 By missiles 112
10.4.4.1.1.2 By munitions 113
10.4.4.1.1.3 By guided projectiles 113
10.4.4.1.1.4 By guided rockets 113
10.4.4.1.1.5 By guided firearms 114
10.4.4.1.2 By platform 114
10.4.4.2 Japan 114
10.4.4.2.1 By product 115
10.4.4.2.1.1 By missiles 115
10.4.4.2.1.2 By munitions 116
10.4.4.2.1.3 By guided projectiles 116
10.4.4.2.1.4 By guided rockets 116
10.4.4.2.1.5 By guided firearms 117
10.4.4.2.2 By platform 117
10.4.4.3 India 117
10.4.4.3.1 By product 118
10.4.4.3.1.1 By missiles 118
10.4.4.3.1.2 By munitions 119
10.4.4.3.1.3 By guided projectiles 119
10.4.4.3.1.4 By guided rockets 120
10.4.4.3.1.5 By guided firearms 120
10.4.4.3.1.6 By platform 120
10.4.4.4 Australia 121
10.4.4.4.1 By product 122
10.4.4.4.1.1 By missiles 122
10.4.4.4.1.2 By munitions 123
10.4.4.4.1.3 By guided projectiles 123
10.4.4.4.1.4 By guided rockets 123
10.4.4.4.1.5 By guided firearms 124
10.4.4.4.2 By platform 124
10.5 MIDDLE EAST 125
10.5.1 BY PRODUCT 126
10.5.2 BY PLATFORM 126
10.5.3 BY TECHNOLOGY 127
10.5.4 BY COUNTRY 127
10.5.4.1 UAE 127
10.5.4.1.1 By product 128
10.5.4.1.1.1 By missiles 128
10.5.4.1.1.2 By munitions 129
10.5.4.1.1.3 By guided projectiles 129
10.5.4.1.1.4 By guided rockets 129
10.5.4.1.1.5 By guided firearms 130
10.5.4.1.2 By platform 130
10.5.4.2 SAUDI ARABIA 131
10.5.4.2.1 By product 131
10.5.4.2.1.1 By missiles 131
10.5.4.2.1.2 By munitions 132
10.5.4.2.1.3 By guided projectiles 132
10.5.4.2.1.4 By guided rockets 132
10.5.4.2.1.5 By guided firearms 133
10.5.4.2.2 By platforms 133
10.5.4.3 Israel 133
10.5.4.3.1 By product 134
10.5.4.3.1.1 By missiles 134
10.5.4.3.1.2 By munitions 134
10.5.4.3.1.3 By guided projectiles 135
10.5.4.3.1.4 By guided rockets 135
10.5.4.3.1.5 By guided firearms 135
10.5.4.3.1.6 By platform 136
10.6 REST OF THE WORLD 136
10.6.1 BY PRODUCT 137
10.6.2 BY PLATFORM 137
10.6.3 BY TECHNOLOGY 138
10.6.4 BY REGION 138

10.6.4.1 Latin America 138
10.6.4.1.1 By product 139
10.6.4.1.2 By platform 139
10.6.4.1.3 By technology 140
10.6.4.2 AFRICA 140
10.6.4.2.1 By product 141
10.6.4.2.2 By platform 141
11 COMPETITIVE LANDSCAPE 142
11.1 INTRODUCTION 142
11.2 BRAND ANALYSIS 143
11.3 PRODUCT MAPPING 144
11.4 RANK ANALYSIS 145
11.5 REVENUE AND CONTRACTS-BASED MARKET SHARE ANALYSIS OF TOP COMPANIES 145
11.6 COMPETITIVE SITUATIONS AND TRENDS 147
11.6.1 CONTRACTS 148
11.6.2 NEW PRODUCT LAUNCHES 153
11.6.3 AGREEMENTS, ACQUISITIONS, PARTNERSHIPS, COLLABORATIONS, AND JOINT VENTURES 153
11.6.4 EXPANSIONS 155
12 COMPANY PROFILES 156
12.1 INTRODUCTION 156
12.2 FINANCIALS OF THE MAJOR PLAYERS IN SMART WEAPONS MARKET 157
(Overview, Financials, Products & Services, Strategy, and Developments)*
12.3 LOCKHEED MARTIN CORPORATION 158
12.4 RAYTHEON COMPANY 162
12.5 MBDA, INC. 166
12.6 GENERAL DYNAMICS CORPORATION 169
12.7 ORBITAL ATK 173
12.8 BAE SYSTEMS, PLC. 177
12.9 THE BOEING COMPANY 181
12.10 L-3 COMMUNICATIONS HOLDINGS, INC. 183
12.11 THALES GROUP 186
12.12 TEXTRON INC. 188
12.13 RHEINMETALL AG 190
*Details on overview, financials, product & services, strategy, and developments might not be captured in case of unlisted companies.
13 APPENDIX 193
13.1 DISCUSSION GUIDE 193
13.2 KNOWLEDGE STORE: MARKETSANDMARKETS’ SUBSCRIPTION PORTAL 196
13.3 INTRODUCING RT: REAL TIME MARKET INTELLIGENCE 198
13.4 AVAILABLE CUSTOMIZATION 198
13.4.1 COUNTRY-LEVEL ANALYSIS 198
13.4.2 ADDITIONAL COMPANY PROFILES (UPTO 5) 198
13.5 RELATED REPORTS 199

Marine Battery Market by Battery Type (Lithium, Nickel Cadmium, Fuel Cell, Lead-acid), Propulsion Type (Fully Electric, Hybrid, Conventional), Ship Ty...

Publisher:        MarketsandMarkets

# of Pages:        263

Rating: 

1 User License $4,950

Publication Date:  November, 2021

Price:       $4,950 / User License




1 INTRODUCTION 38
1.1 OBJECTIVES OF THE STUDY 38
1.2 MARKET DEFINITION 38
1.2.1 MARINE BATTERY MARKET: INCLUSIONS AND EXCLUSIONS 39
1.3 STUDY SCOPE 40
1.3.1 MARKETS COVERED 40
FIGURE 1 MARINE BATTERY MARKET SEGMENTATION 40
1.3.2 REGIONAL SCOPE 40
1.3.3 YEARS CONSIDERED FOR THE STUDY 41
1.4 CURRENCY & PRICING 41
1.5 USD EXCHANGE RATES 41
1.6 LIMITATIONS 42
1.7 MARKET STAKEHOLDERS 42
1.8 SUMMARY OF CHANGES 42
2 RESEARCH METHODOLOGY 44
2.1 RESEARCH DATA 44
FIGURE 2 REPORT PROCESS FLOW 44
FIGURE 3 MARINE BATTERY MARKET: RESEARCH DESIGN 45
2.1.1 SECONDARY DATA 46
2.1.1.1 Key data from secondary sources 46
2.1.2 PRIMARY DATA 46
2.1.2.1 Breakdown of primaries 47
FIGURE 4 BREAKDOWN OF PRIMARY INTERVIEWS: BY COMPANY TYPE, DESIGNATION, & REGION 47
2.2 FACTOR ANALYSIS 47
2.2.1 INTRODUCTION 47
2.2.2 DEMAND-SIDE INDICATORS 48
2.2.2.1 Growing maritime tourism industry 48
2.2.3 SUPPLY-SIDE ANALYSIS 48
2.2.3.1 Advanced batteries for electric & hybrid ships 48
2.3 MARKET DEFINITION & SCOPE 49
2.3.1 SEGMENT DEFINITIONS 49
2.3.1.1 Marine battery market, by sales channel 49
2.3.1.2 Marine battery market, by battery type 49
2.3.1.3 Marine battery market, by propulsion type 49
2.3.1.4 Marine battery market, by nominal capacity 49
2.3.1.5 Marine battery market, by energy density 49
2.3.1.6 Marine battery market, by ship type 49
2.3.1.7 Marine battery market, by battery function 50
2.3.1.8 Marine battery market, by battery design 50
2.3.1.9 Marine battery market, by ship power 50
2.3.2 EXCLUSIONS 50
2.3.3 KEY INDUSTRY INSIGHTS 50
2.3.4 PRIMARIES INTERVIEWEES DETAILS 51
2.4 MARKET SIZE ESTIMATION & METHODOLOGY 51
2.4.1 BOTTOM-UP APPROACH 51
FIGURE 5 MARKET SIZE ESTIMATION METHODOLOGY: BOTTOM-UP APPROACH 52
2.4.2 TOP-DOWN APPROACH 52
FIGURE 6 MARKET SIZE ESTIMATION METHODOLOGY: TOP-DOWN APPROACH 52
2.5 DATA TRIANGULATION 53
FIGURE 7 DATA TRIANGULATION: MARINE BATTERY MARKET 53
2.6 MARKET SIZING & FORECASTING 54
FIGURE 8 RESEARCH ASSUMPTIONS 54
2.7 LIMITATIONS 55
2.8 GROWTH FORECAST 55
3 EXECUTIVE SUMMARY 56
FIGURE 9 BY PROPULSION TYPE, CONVENTIONAL SEGMENT PROJECTED TO LEAD MARINE BATTERY MARKET DURING FORECAST PERIOD 56
FIGURE 10 BY BATTERY TYPE, LITHIUM SEGMENT PROJECTED TO LEAD MARINE BATTERY MARKET FROM 2020 TO 2030 57
FIGURE 11 BY SALES CHANNEL, AFTERMARKET SEGMENT PROJECTED TO LEAD MARINE BATTERY MARKET DURING FORECAST PERIOD 57
FIGURE 12 BY REGION, EUROPE ESTIMATED TO LEAD MARINE BATTERY MARKET FROM 2021 TO 2030 58
4 PREMIUM INSIGHTS 59
4.1 ATTRACTIVE GROWTH OPPORTUNITIES IN MARINE BATTERY MARKET 59
FIGURE 13 IMPLEMENTATION OF SULFUR 2020 RULE AND DEVELOPMENT OF LITHIUM-ION BATTERIES DRIVE MARINE BATTERY MARKET 59
4.2 MARINE BATTERY MARKET, BY SALES CHANNEL 59
FIGURE 14 AFTERMARKET SEGMENT TO LEAD MARINE BATTERY MARKET FROM
2021 TO 2030 59
4.3 MARINE BATTERY MARKET, BY SHIP TYPE 60
FIGURE 15 COMMERCIAL SEGMENT PROJECTED TO DOMINATE MARINE BATTERY MARKET DURING FORECAST PERIOD 60
4.4 MARINE BATTERY MARKET, BY SHIP POWER 60
FIGURE 16 150–745 KW SEGMENT TO LEAD MARINE BATTERY MARKET FROM
2021 TO 2030 60
4.5 MARINE BATTERY MARKET, BY REGION 61
FIGURE 17 EUROPE ACCOUNTED FOR LARGEST SHARE OF MARINE BATTERY
MARKET IN 2020 61
5 MARKET OVERVIEW 62
5.1 INTRODUCTION 62
5.1.1 ROADMAP OF MARINE ELECTRIFICATION 62
TABLE 1 MILESTONES OF IMPLEMENTATION PLAN FOR ELECTRIFICATION IN MARINE TRANSPORT (2025-2035-2050) 62
5.2 MARKET DYNAMICS 64
FIGURE 18 MARINE BATTERY MARKET DYNAMICS: DRIVERS, RESTRAINTS, OPPORTUNITIES, & CHALLENGES 64
5.2.1 DRIVERS 64
5.2.1.1 Implementation of sulfur 2020 rule 64
TABLE 2 SULFUR CONTENT REGULATIONS IN BUNKER FUEL 65
5.2.1.2 Rising demand for electric and hybrid passenger vessels 65
5.2.1.3 Increase in seaborne trade globally 66
FIGURE 19 GLOBAL SEABORNE TRADE, BY QUANTITY TRADED,
2006–2017 (PRE-COVID-19) 66
5.2.1.4 Growing maritime tourism industry 67
FIGURE 20 INCREASE IN NUMBER OF CRUISE PASSENGERS IN EUROPE, 2015–2020 67
FIGURE 21 GLOBAL CRUISE INDUSTRY SHARE, BY REGION, 2020 68
5.2.1.5 Development of lithium batteries 68
FIGURE 22 MOST COMMON LITHIUM-ION BATTERIES WITH KEY FEATURES 68
TABLE 3 CURRENT BATTERY CAPACITY AND REQUIREMENTS OF SOME SHIPS 69
5.2.2 RESTRAINTS 69
5.2.2.1 Long downtime during retrofitting of ships resulting in revenue loss 69
5.2.2.2 Limited range and capacity of fully electric ships 70
5.2.3 OPPORTUNITIES 70
5.2.3.1 Potential for marine battery manufacturers to develop high powered batteries 70
FIGURE 23 RELATIVE FEASIBILITY OF DIFFERENT ENERGY STORAGE TECHNOLOGIES 71
5.2.3.2 Potential for battery charging via renewable energy sources 71
5.2.3.3 Hybrid propulsion technology for large ships 72
FIGURE 24 AVERAGE SHIP SIZE BY DEADWEIGHT TONNAGE (DWT) 72
5.2.4 CHALLENGES 72
5.2.4.1 Inadequate charging infrastructure 72
5.2.4.2 High initial capital expenditure 73
TABLE 4 CAPITAL EXPENDITURE AND ANNUAL SAVINGS 73
TABLE 5 CAPITAL EXPENDITURE AND PAYBACK 73
TABLE 6 CAPITAL EXPENDITURE, SAVINGS, AND PAYBACK 74
5.3 COVID-19 IMPACT ON MARINE BATTERY MARKET 74
5.4 RANGE/SCENARIOS 75
FIGURE 25 PESSIMISTIC, REALISTIC, AND OPTIMISTIC SCENARIOS OF MARINE BATTERY MARKET WITH REGARDS TO COVID-19 PANDEMIC 75
5.5 TRENDS/DISRUPTIONS IMPACTING CUSTOMERS’ BUSINESS 76
5.5.1 REVENUE SHIFT AND NEW REVENUE POCKETS FOR MARINE BATTERY MARKET 76
5.6 SUPPLY CHAIN ANALYSIS 77
FIGURE 26 VALUE CHAIN ANALYSIS: MARINE BATTERY MARKET 77
5.7 AVERAGE SELLING PRICE 78
5.8 MARKET ECOSYSTEM MAP 78
5.8.1 PROMINENT COMPANIES 78
5.8.2 PRIVATE AND SMALL ENTERPRISES 78
5.8.3 END USERS 78
FIGURE 27 MARKET ECOSYSTEM MAP: MARINE BATTERY MARKET 79
TABLE 7 MARINE BATTERY MARKET ECOSYSTEM 79
5.9 PORTER’S FIVE FORCES MODEL 80
TABLE 8 PORTER’S FIVE FORCES ANALYSIS 80
FIGURE 28 PORTER’S FIVE FORCES ANALYSIS OF MARINE BATTERY MARKET 81
5.10 CASE STUDY ANALYSIS 82
5.10.1 ROLLS-ROYCE MARINE – 2020 82
5.10.2 KONGSBERG AND YARA – 2020 82
5.10.3 JAPANESE CONSORTIUM – 2025 82
5.11 TARIFF AND REGULATORY LANDSCAPE 83
6 INDUSTRY TRENDS 85
6.1 INTRODUCTION 85
6.2 ROADMAP TOWARD EMISSION-FREE SHIPPING INDUSTRY 85
FIGURE 29 ROADMAP TOWARD EMISSION-FREE SHIPPING INDUSTRY 85
6.3 PHASING OF MARINE PROPULSION TECHNOLOGIES 86
FIGURE 30 POTENTIAL PHASING OF DIFFERENT PROPULSION TECHNOLOGIES IN MARINE INDUSTRY 86
6.4 EMERGING TRENDS 87
FIGURE 31 EMERGING TRENDS 87
6.4.1 ELECTRIFICATION OF LEISURE BOATS 87
6.4.2 POTENTIAL OF HYBRID TECHNOLOGY 88
6.4.3 FULLY ELECTRIC FERRIES FOR PASSENGER TRANSPORT 88
6.4.4 SOLAR SAILS 89
6.4.5 ADVANCED BATTERIES FOR ELECTRIC SHIPS 89
6.4.6 POTENTIAL OF HYDROGEN AS ZERO-EMISSION FUEL FOR SHIPPING INDUSTRY 90
6.4.7 BATTERY POWERED NAVAL VESSELS 90
6.4.8 NEXT-GENERATION SOLID STATE BATTERY TECHNOLOGY 91
6.4.8.1 Table: Summary of Commercial Batteries 91
6.5 SUPPLY CHAIN ANALYSIS 92
FIGURE 32 SUPPLY CHAIN ANALYSIS 92
6.6 INNOVATIONS & PATENT REGISTRATIONS 93
7 MARINE BATTERY MARKET, BY SHIP TYPE 94
7.1 INTRODUCTION 95
FIGURE 33 BY SHIP TYPE, COMMERCIAL SEGMENT TO LEAD MARINE BATTERY MARKET DURING FORECAST PERIOD 95
TABLE 9 MARINE BATTERY MARKET SIZE, BY SHIP TYPE, 2017–2020 (USD MILLION) 95
TABLE 10 MARINE BATTERY MARKET SIZE, BY SHIP TYPE, 2021–2030 (USD MILLION) 96
TABLE 11 MARINE BATTERY MARKET SIZE, BY SHIP TYPE, 2017–2020 (UNITS) 96
TABLE 12 MARINE BATTERY MARKET SIZE, BY SHIP TYPE, 2021–2030 (UNITS) 96
7.2 COMMERCIAL 96
TABLE 13 MARINE BATTERY MARKET SIZE, BY COMMERCIAL SHIP, 2017–2020 (UNITS) 97
TABLE 14 COMMERCIAL MARINE BATTERY MARKET SIZE, BY COMMERCIAL SHIP, 2021–2030 (UNITS) 97
7.2.1 INLAND VESSELS 97
TABLE 15 INLAND VESSELS: MARINE BATTERY MARKET SIZE, BY TYPE,
2017–2020 (UNITS) 97
TABLE 16 INLAND VESSELS: MARINE BATTERY MARKET SIZE, BY TYPE,
2021–2030 (UNITS) 98
7.2.1.1 Passenger vessels 98
TABLE 17 INLAND PASSENGER VESSELS: MARINE BATTERY MARKET SIZE,
BY TYPE, 2017–2020 (UNITS) 98
TABLE 18 INLAND PASSENGER VESSELS: MARINE BATTERY MARKET SIZE,
BY TYPE, 2021–2030 (UNITS) 98
7.2.1.1.1 Yachts 99
7.2.1.1.1.1 Fully electric yachts can use solar power to charge their batteries 99
7.2.1.1.2 Ferries 99
7.2.1.1.2.1 High adoption of electric ferries in North America and Europe due to changing environmental regulations 99
7.2.1.1.3 Cruise ships 100
7.2.1.1.3.1 Adoption of hybrid-electric propulsion technologies for cruise ships to increase in coming years 100
7.2.1.2 Cargo vessels 100
7.2.1.2.1 Inland cargo ships 100
7.2.1.2.1.1 High market potential for inland cargo ships 100
7.2.1.2.2 Inland tankers 100
7.2.1.2.2.1 Lithium-ion battery-based fully electric shipping tanker designed by Japanese companies 100
7.2.1.2.3 Dry cargo carriers 101
7.2.1.2.3.1 Rise in demand for new dry cargo carriers to handle increasing cargo volume will increase demand for battery propulsion 101
7.2.1.2.4 Barges 101
7.2.1.2.4.1 More manufacturers looking forward to developing battery-driven barges for emission-free sailing 101
7.2.1.3 Fishing vessels 101
7.2.1.3.1 Fuel consumption of fully electric fishing vessels reduced by 80% compared to other conventional fishing vessels 101
7.2.1.4 Tugs & workboats 101
7.2.1.4.1 Electrification of tugs & workboats will help significantly reduce emissions at ports 101
7.2.1.5 Research vessels 102
7.2.1.5.1 Market for retrofitting research vessels larger than that of newbuilds at present 102
7.2.2 SEAFARING VESSELS 102
7.2.2.1 Passenger vessels 102
7.2.2.1.1 Adoption of hybrid-electric propulsion technologies for cruise ships to increase in coming years 102
7.2.2.2 Cargo vessels 102
7.2.2.2.1 Container vessels 102
7.2.2.2.1.1 Electrification of container ships will happen first, gradually followed by larger container ships 102
7.2.2.2.2 Bulk carriers 103
7.2.2.2.2.1 Bulk carriers can only be fitted with hybrid-electric propulsion systems due to constraints faced by pure battery systems 103
7.2.2.2.3 Tankers 103
7.2.2.2.3.1 Japanese companies designed a domestic fully electric shipping tanker that uses lithium-ion batteries 103
7.2.2.2.4 General cargo vessels 103
7.2.2.2.4.1 Batteries installed on cargo vessels can sustain them to sail in and out of harbors for approximately 30 minutes, after which the vessels will switch to diesel engine 103
7.2.2.3 Fishing vessels 103
7.2.2.3.1 Fuel consumption on electric fishing vessels can be reduced by 80% compared to other fishing vessels by using battery-driven propulsion system 103
7.2.2.4 Research vessels 104
7.2.2.4.1 Market for retrofitting research vessels is larger than that of newbuilds at present 104
7.2.2.5 Submarines 104
7.2.2.5.1 Remotely operated vehicle (ROV) 104
7.2.2.5.1.1 Multiple advantages of ROVs to drive market growth 104
7.2.2.5.2 Autonomous underwater vehicle (AUV) 104
7.2.2.5.2.1 Provide more accurate data due to better payload capacity 104
7.3 DEFENSE 105
TABLE 19 MARINE BATTERY MARKET SIZE, BY DEFENSE SHIP, 2017–2020 (UNITS) 105
TABLE 20 MARINE BATTERY MARKET SIZE, BY DEFENSE SHIP, 2021–2030 (UNITS) 105
7.3.1 DESTROYERS 106
7.3.1.1 Defense forces of countries like US, UK, and India focus on integrating electric propulsive destroyers into their fleet to gain high operational efficiency 106
7.3.2 FRIGATES 106
7.3.2.1 Naval forces of countries like US and India plan to install hybrid propulsion systems for frigates 106
7.3.3 CORVETTES 106
7.3.3.1 Defense forces of several countries ordering all-electric propulsion corvettes 106
7.3.4 AMPHIBIOUS SHIPS 106
7.3.4.1 Naval forces worldwide considering the possibility of using amphibious ships with hybrid propulsion 106
7.3.5 OFFSHORE SUPPORT VESSELS (OSVS) 107
7.3.5.1 OSVs available in hybrid and electric propulsion setups 107
7.3.6 SUBMARINES 107
7.3.6.1 Countries like US, France, and India currently use or develop electric propulsion systems for their fleet of submarines 107
7.4 UNMANNED UNDERWATER VEHICLES 107
8 MARINE BATTERY MARKET, BY BATTERY FUNCTION 108
8.1 INTRODUCTION 109
FIGURE 34 DUAL-PURPOSE BATTERIES SEGMENT TO REGISTER HIGHEST CAGR DURING FORECAST PERIOD 109
TABLE 21 MARINE BATTERY MARKET SIZE, BY BATTERY FUNCTION, 2017–2020 (UNITS) 109
TABLE 22 MARINE BATTERY MARKET SIZE, BY BATTERY FUNCTION, 2021–2030 (UNITS) 109
TABLE 23 MARINE BATTERY MARKET SIZE, BY BATTERY FUNCTION, 2017–2020 (USD MILLION) 110
TABLE 24 MARINE BATTERY MARKET SIZE, BY BATTERY FUNCTION,
2021–2030 (USD MILLION) 110
8.2 STARTING BATTERIES 110
8.2.1 DEMAND FOR QUICK AND POWERFUL SPURT OF ENERGY TO START SHIP ENGINES TO DRIVE MARKET FOR STARTING BATTERIES 110
8.3 DEEP-CYCLE BATTERIES 110
8.3.1 DEMAND FOR RECOVERING FULLY AFTER HEAVY DISCHARGE WILL FUEL MARKET FOR DEEP-CYCLE BATTERIES 110
8.4 DUAL-PURPOSE BATTERIES 111
8.4.1 RISE IN SMALL-SIZED VESSELS GLOBALLY WILL LEAD TO INCREASED DEMAND FOR DUAL-PURPOSE BATTERIES 111
9 MARINE BATTERY MARKET, BY NOMINAL CAPACITY 112
9.1 INTRODUCTION 113
FIGURE 35 > 250 AH SEGMENT TO REGISTER HIGHEST CAGR DURING FORECAST PERIOD 113
TABLE 25 MARINE BATTERY MARKET SIZE, BY NOMINAL CAPACITY,
2017–2020 (UNITS) 113
TABLE 26 MARINE BATTERY MARKET SIZE, BY NOMINAL CAPACITY,
2021–2030 (UNITS) 113
TABLE 27 MARINE BATTERY MARKET SIZE, BY NOMINAL CAPACITY,
2017–2020 (USD MILLION) 114
TABLE 28 MARINE BATTERY MARKET SIZE, BY NOMINAL CAPACITY,
2021–2030 (USD MILLION) 114
9.2 <100 AH 114
9.2.1 INLAND FERRIES ADOPT BATTERIES WITH NOMINAL CAPACITY OF LESS THAN 100 AH 114
9.3 100–250 AH 114
9.3.1 DEMAND FOR BATTERIES WITH NOMINAL CAPACITY OF 100–250 AH FROM DRY CARGO VESSELS AND BARGES 114
9.4 >250 AH 114
9.4.1 RISE IN SEAFARING VESSELS GLOBALLY WILL LEAD TO INCREASED DEMAND FOR BATTERIES WITH >250 AH NOMINAL CAPACITY 114
10 MARINE BATTERY MARKET, BY PROPULSION TYPE 115
10.1 INTRODUCTION 116
FIGURE 36 FULLY ELECTRIC SEGMENT TO REGISTER HIGHEST CAGR DURING FORECAST PERIOD 116
TABLE 29 MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2017–2020 (UNITS) 116
TABLE 30 MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2021–2030 (UNITS) 117
TABLE 31 MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2017–2020 (USD MILLION) 117
TABLE 32 MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 117
10.2 FULLY ELECTRIC 117
10.2.1 FULLY ELECTRIC-DRIVEN SHIPS HAVE POSITIVE EFFECT ON ENVIRONMENT AS INCLUSION OF HIGH ENERGY STORAGE IN BATTERIES AND OPTIMIZED POWER CONTROL CAN REDUCE FUEL CONSUMPTION, MAINTENANCE,
AND EMISSIONS 117
TABLE 33 GLOBAL ALL ELECTRIC SHIPS PROJECTS 118
10.3 HYBRID 119
10.3.1 DEVELOPMENT OF ADVANCED BATTERY TECHNOLOGY AND HYBRID BATTERY POWER SYSTEMS HAS BECOME A NECESSITY FOR SHIPS FOR POWER GENERATION 119
10.4 CONVENTIONAL 120
10.4.1 MAJOR SHIPOWNERS WITH CONVENTIONAL PROPULSION ARE RETROFITTING THEIR SYSTEMS WITH HYBRID-ELECTRIC PROPULSION TO REDUCE GREENHOUSE EMISSIONS 120
11 MARINE BATTERY MARKET, BY SHIP POWER 121
11.1 INTRODUCTION 122
FIGURE 37 BY SHIP POWER, 150–745 SEGMENT TO LEAD MARINE BATTERY MARKET DURING FORECAST PERIOD 122
TABLE 34 MARINE BATTERY MARKET SIZE, BY SHIP POWER, 2017–2020 (UNITS) 122
TABLE 35 MARINE BATTERY MARKET SIZE, BY SHIP POWER, 2021–2030 (UNITS) 123
TABLE 36 MARINE BATTERY MARKET SIZE, BY SHIP POWER,
2017–2020 (USD MILLION) 123
TABLE 37 MARINE BATTERY MARKET SIZE, BY SHIP POWER,
2021–2030 (USD MILLIONS) 123
11.2 <75 KW 124
11.2.1 DEMAND FOR FULLY ELECTRIC YACHTS IN EUROPE TO DRIVE MARINE BATTERY MARKET 124
11.3 75–150 KW 124
11.3.1 USE OF FULLY ELECTRIC FERRIES FOR TRANSPORT WILL DRIVE MARINE BATTERY MARKET 124
11.4 150–745 KW 124
11.4.1 LARGE RETROFIT POTENTIAL FOR CARGO VESSELS IN 150–745 KW RANGE 124
11.5 740–7,560 KW 124
11.5.1 INCREASED INVESTMENT IN HYBRID-ELECTRIC PROPULSION SYSTEMS DRIVE MARKET FOR ELECTRIC SHIPS 124
11.6 >7,560 KW 125
11.6.1 ADOPTION OF HYBRID-ELECTRIC PROPULSION SYSTEMS CHALLENGING IN SHIPS WITH HIGH POWER CAPACITY 125
12 MARINE BATTERY MARKET, BY BATTERY DESIGN 126
12.1 INTRODUCTION 127
FIGURE 38 LIQUID/GEL-BASED SEGMENT TO REGISTER HIGHER CAGR THAN SOLID-STATE SEGMENT DURING FORECAST PERIOD 127
TABLE 38 MARINE BATTERY MARKET SIZE, BY BATTERY DESIGN, 2017–2020 (UNITS) 127
TABLE 39 MARINE BATTERY MARKET SIZE, BY BATTERY DESIGN, 2021–2030 (UNITS) 127
TABLE 40 MARINE BATTERY MARKET SIZE, BY BATTERY DESIGN,
2017–2020 (USD MILLION) 128
TABLE 41 MARINE BATTERY MARKET SIZE, BY BATTERY DESIGN,
2021–2030 (USD MILLION) 128
12.2 SOLID STATE 128
12.2.1 DEMAND FOR GREATER ENERGY DENSITY ANTICIPATED TO DRIVE MARKET FOR SOLID STATE BATTERIES 128
12.3 LIQUID/GEL-BASED 129
12.3.1 DEMAND FOR SAFER BATTERY SERVICE ANTICIPATED TO DRIVE MARKET FOR LIQUID/GEL-BASED 129
13 MARINE BATTERY MARKET, BY BATTERY TYPE 130
13.1 INTRODUCTION 131
FIGURE 39 LITHIUM SEGMENT TO REGISTER HIGHEST CAGR DURING FORECAST PERIOD 131
TABLE 42 MARINE BATTERY MARKET SIZE, BY BATTERY TYPE, 2017–2020 (UNITS) 131
TABLE 43 MARINE BATTERY MARKET SIZE, BY BATTERY TYPE, 2021–2030 (UNITS) 132
TABLE 44 MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 132
TABLE 45 MARINE BATTERY MARKET SIZE, BY BATTERY TYPE, 2021–2030 (USD MILLION) 132
13.2 LITHIUM 133
13.2.1 CURRENTLY, HYBRID AND FULLY ELECTRIC VESSELS RELY ON LITHIUM BATTERIES FOR PRIME POWER SOURCE 133

13.3 LEAD-ACID 133
13.3.1 LEAD-ACID BATTERIES PREFERRED IN MARINE VESSELS AS THEY ARE DURABLE, EASILY RECYCLABLE, COST-EFFECTIVE, AND ENABLE SIMPLE CHARGING 133
13.3.2 FLOODED 133
13.3.3 GEL 134
13.3.4 AGM 134
13.4 NICKEL CADMIUM BATTERY 134
13.4.1 SPECIALTY NICAD BATTERIES ARE USED IN EMERGENCY LIGHTING, BACKUP SYSTEMS, SECONDARY POWER, AND OTHER SIMILAR APPLICATIONS 134
13.5 SODIUM-ION 134
13.5.1 SODIUM-ION BATTERIES HAVE HIGH ENERGY DENSITY AND LOW CHARGING TIME AND CAN BE USED AS SUBSTITUTE FOR LITHIUM-ION BATTERIES DUE TO ABUNDANCE OF SODIUM 134
13.6 FUEL CELL 135
13.6.1 FUEL CELL IS ALTERNATIVE TECHNOLOGY OF LITHIUM-ION AND LEAD-ACID BATTERIES THAT CAN HELP CUT DOWN CARBON EMISSIONS, ESPECIALLY COMPARED TO TRADITIONAL DIESEL-DRIVEN PROPULSION SYSTEMS 135
TABLE 46 ONGOING FUEL CELL PROJECTS IN SHIPPING INDUSTRY 135
13.6.2 HYDROGEN-BASED 136
13.6.3 AMMONIA-BASED 136
13.6.4 OXIDE-BASED 136
13.6.5 CARBON-BASED 136
14 MARINE BATTERY MARKET, BY SALES CHANNEL 137
14.1 INTRODUCTION 138
FIGURE 40 AFTERMARKET SEGMENT TO REGISTER HIGHER CAGR THAN OEM SEGMENT DURING FORECAST PERIOD 138
TABLE 47 MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 139
TABLE 48 MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 139
TABLE 49 MARINE BATTERY MARKET SIZE, BY SALES CHANNEL, 2017–2020 (UNITS) 139
TABLE 50 MARINE BATTERY MARKET SIZE, BY SALES CHANNEL, 2021–2030 (UNITS) 139
14.2 0EM 140
14.2.1 HIGH DEMAND FOR FULLY ELECTRIC FERRIES IN EUROPE TO DRIVE THE MARKET FOR BATTERIES 140
14.3 AFTERMARKET 140
14.3.1 SHIPOWNERS UPDATE OR RETROFIT EQUIPMENT INSTALLED ON EXISTING VESSELS TO INCREASE EFFICIENCY AND EXTEND DURABILITY 140
15 MARINE BATTERY MARKET, BY ENERGY DENSITY 141
15.1 INTRODUCTION 142
TABLE 51 ENERGY DENSITY AND SYSTEM ENERGY OF VARIOUS BATTERY TYPES 142
15.2 <100 WH/KG 142
15.2.1 <100 WH/KG BATTERIES USED FOR SECONDARY/EMERGENCY POWER APPLICATIONS 142
15.3 100–500 WH/KG 142
15.3.1 100–500 WH/KG BATTERIES USED FOR PRIMARY POWER STORAGE AND PROPULSION 142
15.4 >500 WH/KG 142
15.4.1 BATTERIES ABOVE 500 WH/KG ARE GENERALLY USED FOR APPLICATIONS LIKE PROPULSION 142
16 REGIONAL ANALYSIS 143
16.1 INTRODUCTION 144
16.2 NORTH AMERICA 144
FIGURE 41 NORTH AMERICA MARINE BATTERY MARKET SNAPSHOT 145
TABLE 52 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY COUNTRY,
2017–2020 (USD MILLION) 145
TABLE 53 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY COUNTRY,
2021–2030 (USD MILLION) 146
TABLE 54 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL, 2017–2020 (USD MILLION) 146
TABLE 55 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL, 2021–2030 (USD MILLION) 146
TABLE 56 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2017–2020 (USD MILLION) 146
TABLE 57 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2021–2030 (USD MILLION) 147
TABLE 58 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 147
TABLE 59 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 147
TABLE 60 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 147
TABLE 61 NORTH AMERICA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2021–2030 (USD MILLION) 148
16.2.1 US 148
16.2.1.1 Growing demand for luxury sailing to increase adoption of electric boats 148
TABLE 62 US: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 149
TABLE 63 US: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 149
TABLE 64 US: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 149
TABLE 65 US: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 149
TABLE 66 US: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 150
TABLE 67 US: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 150
TABLE 68 US: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 150
TABLE 69 US: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2021–2030 (USD MILLION) 150
16.2.2 CANADA 151
16.2.2.1 Canadian government’s strategic decision to develop its indigenous marine industry to grow market 151
TABLE 70 CANADA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 151
TABLE 71 CANADA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 152
TABLE 72 CANADA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 152
TABLE 73 CANADA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 152
TABLE 74 CANADA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 152
TABLE 75 CANADA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 153
TABLE 76 CANADA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 153
TABLE 77 CANADA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2021–2030 (USD MILLION) 153
16.3 EUROPE 154
FIGURE 42 EUROPE MARINE BATTERY MARKET SNAPSHOT 154
TABLE 78 EUROPE: MARINE BATTERY MARKET SIZE, BY COUNTRY,
2017–2020 (USD MILLION) 155
TABLE 79 EUROPE: MARINE BATTERY MARKET SIZE, BY COUNTRY,
2021–2030 (USD MILLION) 155
TABLE 80 EUROPE: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 155
TABLE 81 EUROPE: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 156
TABLE 82 EUROPE: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 156
TABLE 83 EUROPE: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 156
TABLE 84 EUROPE: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 156
TABLE 85 EUROPE: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 157
TABLE 86 EUROPE: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 157
TABLE 87 EUROPE: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2021–2030 (USD MILLION) 157
16.3.1 NORWAY 157
16.3.1.1 Implementation of IMO rule driving adoption of battery propulsion in shipping industry in Norway 157
FIGURE 43 CO2 EMISSIONS FROM DOMESTIC SHIPPING IN NORWAY 158
TABLE 88 NORWAY: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 158
TABLE 89 NORWAY: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 159
TABLE 90 NORWAY: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 159
TABLE 91 NORWAY: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 159
TABLE 92 NORWAY: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 159
TABLE 93 NORWAY: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 160
16.3.2 SWEDEN 160
16.3.2.1 Stringent IMO 2020 rule driving demand for marine batteries in Sweden 160
TABLE 94 SWEDEN: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 160
TABLE 95 SWEDEN: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 160
TABLE 96 SWEDEN: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 161
TABLE 97 SWEDEN: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 161
TABLE 98 SWEDEN: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 161
TABLE 99 SWEDEN: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 161
16.3.3 NETHERLANDS 162
16.3.3.1 Push toward zero-emission ships driving marine battery market in Netherlands 162
TABLE 100 NETHERLANDS: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 162
TABLE 101 NETHERLANDS: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 162
TABLE 102 NETHERLANDS: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2017–2020 (USD MILLION) 162
TABLE 103 NETHERLANDS: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2021–2030 (USD MILLION) 163
TABLE 104 NETHERLANDS: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 163
TABLE 105 NETHERLANDS: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 163
16.3.4 FRANCE 163
16.3.4.1 Presence of stringent regulations drive demand for marine batteries in France 163
TABLE 106 FRANCE: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 164
TABLE 107 FRANCE: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 164
TABLE 108 FRANCE: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 164
TABLE 109 FRANCE: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 164
TABLE 110 FRANCE: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 165
TABLE 111 FRANCE: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 165
16.3.5 DENMARK 165
16.3.5.1 Stringent environmental regulations drive demand for marine batteries in Denmark 165
TABLE 112 DENMARK: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 165
TABLE 113 DENMARK: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 166
TABLE 114 DENMARK: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 166
TABLE 115 DENMARK: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 166
TABLE 116 DENMARK: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 166
TABLE 117 DENMARK: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 167
16.3.6 UK 167
16.3.6.1 Rising focus on adoption of batteries by shipbuilders in UK 167
TABLE 118 UK: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 167
TABLE 119 UK: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 167
TABLE 120 UK: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 168
TABLE 121 UK: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 168
TABLE 122 UK: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 168
TABLE 123 UK: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 168
16.3.7 FINLAND 169
16.3.7.1 Major focus on green marine technologies anticipated to drive market growth in Finland 169
TABLE 124 FINLAND: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 169
TABLE 125 FINLAND: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 169
TABLE 126 FINLAND: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 169
TABLE 127 FINLAND: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 170
TABLE 128 FINLAND: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 170
TABLE 129 FINLAND: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 170
16.3.8 REST OF EUROPE 170
TABLE 130 REST OF EUROPE: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL, 2017–2020 (USD MILLION) 171
TABLE 131 REST OF EUROPE: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL, 2021–2030 (USD MILLION) 171
TABLE 132 REST OF EUROPE: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2017–2020 (USD MILLION) 171
TABLE 133 REST OF EUROPE: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2021–2030 (USD MILLION) 171
TABLE 134 REST OF EUROPE: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 172
TABLE 135 REST OF EUROPE: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 172
16.4 ASIA PACIFIC 172
FIGURE 44 ASIA PACIFIC MARINE BATTERY MARKET SNAPSHOT 173
TABLE 136 ASIA PACIFIC: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 173
TABLE 137 ASIA PACIFIC: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 174
TABLE 138 ASIA PACIFIC: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 174
TABLE 139 ASIA PACIFIC: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 174
TABLE 140 ASIA PACIFIC: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 174
TABLE 141 ASIA PACIFIC: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 175
TABLE 142 ASIA PACIFIC: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 175
TABLE 143 ASIA PACIFIC: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2021–2030 (USD MILLION) 175
TABLE 144 ASIA PACIFIC: MARINE BATTERY MARKET VOLUME, BY COUNTRY,
2018–2030 (USD MILLION) 176
TABLE 145 ASIA PACIFIC: MARINE BATTERY MARKET SIZE, BY COUNTRY,
2018–2030 (USD MILLION) 176
16.4.1 CHINA 176
16.4.1.1 Presence of several shipbuilding companies boost market growth in China 176
TABLE 146 CHINA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 177
TABLE 147 CHINA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 177
TABLE 148 CHINA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 177
TABLE 149 CHINA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 177
TABLE 150 CHINA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 178
TABLE 151 CHINA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 178
TABLE 152 CHINA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 178
TABLE 153 CHINA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2021–2030 (USD MILLION) 178
16.4.2 SOUTH KOREA 179
16.4.2.1 Development of fuel cells for ships’ propulsion systems expected to fuel market in South Korea 179
TABLE 154 SOUTH KOREA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 179
TABLE 155 SOUTH KOREA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 179
TABLE 156 SOUTH KOREA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2017–2020 (USD MILLION) 180
TABLE 157 SOUTH KOREA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE, 2021–2030 (USD MILLION) 180
TABLE 158 SOUTH KOREA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 180
TABLE 159 SOUTH KOREA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 180
TABLE 160 SOUTH KOREA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 181
TABLE 161 SOUTH KOREA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2021–2030 (USD MILLION) 181
16.4.3 JAPAN 181
16.4.3.1 Increasing focus on reducing greenhouse gas emissions from international shipping 181
TABLE 162 JAPAN: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 182
TABLE 163 JAPAN: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 182
TABLE 164 JAPAN: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 182
TABLE 165 JAPAN: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 182
TABLE 166 JAPAN: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 183
TABLE 167 JAPAN: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 183
TABLE 168 JAPAN: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 183
TABLE 169 JAPAN: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2021–2030 (USD MILLION) 183
16.4.4 AUSTRALIA 184
16.4.4.1 Switch from diesel-driven ships to battery propelled ships in Australia to reduce operational costs 184
TABLE 170 AUSTRALIA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2017–2020 (USD MILLION) 184
TABLE 171 AUSTRALIA: MARINE BATTERY MARKET SIZE, BY SALES CHANNEL,
2021–2030 (USD MILLION) 184
TABLE 172 AUSTRALIA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2017–2020 (USD MILLION) 184
TABLE 173 AUSTRALIA: MARINE BATTERY MARKET SIZE, BY PROPULSION TYPE,
2021–2030 (USD MILLION) 185
TABLE 174 AUSTRALIA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2017–2020 (USD MILLION) 185
TABLE 175 AUSTRALIA: MARINE BATTERY MARKET SIZE, BY SHIP TYPE,
2021–2030 (USD MILLION) 185
TABLE 176 AUSTRALIA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2017–2020 (USD MILLION) 185
TABLE 177 AUSTRALIA: MARINE BATTERY MARKET SIZE, BY BATTERY TYPE,
2021–2030 (USD MILLION) 186

Inertial Measurement Unit Market by Component (Accelerometer, Gyroscope, Magnetometer, Others), Grade (Marine, Navigation, Tactical, Space, Commercial...

Publisher:        MarketsandMarkets

# of Pages:        250

Rating: 

1 User License $4,950

Publication Date:  February, 2022

Price:       $4,950 / User License




1 INTRODUCTION 35
1.1 OBJECTIVES OF THE STUDY 35
1.2 MARKET DEFINITION 35
1.3 MARKET SCOPE 36
1.3.1 MARKETS COVERED 36
FIGURE 1 INERTIAL MEASUREMENT UNIT MARKET SEGMENTATION 36
1.3.2 YEARS CONSIDERED FOR THE STUDY 36
1.4 INCLUSIONS AND EXCLUSIONS 37
TABLE 1 INCLUSIONS AND EXCLUSIONS IN INERTIAL MEASUREMENT UNIT MARKET 37
1.5 CURRENCY & PRICING 37
1.6 LIMITATIONS 38
1.7 MARKET STAKEHOLDERS 38
1.8 SUMMARY OF CHANGES 39
FIGURE 2 INERTIAL MEASUREMENT UNIT MARKET TO GROW AT HIGHER RATE COMPARED TO PREVIOUS ESTIMATES 39
2 RESEARCH METHODOLOGY 40
2.1 RESEARCH DATA 40
FIGURE 3 RESEARCH PROCESS FLOW 40
FIGURE 4 IMU MARKET: RESEARCH DESIGN 41
2.1.1 SECONDARY DATA 42
2.1.1.1 Key data from secondary sources 42
2.1.2 PRIMARY DATA 43
2.1.2.1 Key primary sources 43
2.2 DEMAND & SUPPLY-SIDE ANALYSIS 43
2.2.1 INTRODUCTION 43
2.2.2 DEMAND-SIDE INDICATORS 44
2.2.2.1 Rise in global air passenger and cargo traffic 44
2.2.3 SUPPLY-SIDE INDICATORS 44
2.2.3.1 Adoption of MEMS in aircraft and defense applications 44
2.3 MARKET SIZE ESTIMATION 45
2.3.1 SEGMENTS AND SUBSEGMENTS 45
2.4 RESEARCH APPROACH & METHODOLOGY 46
2.4.1 BOTTOM-UP APPROACH 46
TABLE 2 IMU MARKET FOR PLATFORM 46
FIGURE 5 MARKET SIZE ESTIMATION METHODOLOGY: BOTTOM-UP APPROACH 46
2.4.2 TOP-DOWN APPROACH 47
FIGURE 6 MARKET SIZE ESTIMATION METHODOLOGY: TOP-DOWN APPROACH 47
2.5 MARKET BREAKDOWN & DATA TRIANGULATION 48
FIGURE 7 DATA TRIANGULATION 48
2.6 GROWTH RATE ASSUMPTIONS 49
2.7 ASSUMPTIONS FOR THE RESEARCH STUDY 49
2.8 RISKS 49
3 EXECUTIVE SUMMARY 50
FIGURE 8 MEMS SEGMENT ESTIMATED TO DOMINATE INERTIAL MEASUREMENT UNIT MARKET, BY TECHNOLOGY, DURING 2021–2026 (USD MILLION) 51
FIGURE 9 GYROSCOPES SEGMENT ESTIMATED TO DOMINATE INERTIAL MEASUREMENT UNIT MARKET, BY COMPONENT, DURING 2021–2026 (USD MILLION) 51
FIGURE 10 COMMERCIAL SEGMENT ESTIMATED TO DOMINATE INERTIAL MEASUREMENT UNIT MARKET, BY END USER, DURING 2021–2026 (USD MILLION) 52
FIGURE 11 ASIA PACIFIC ACCOUNTED FOR LARGEST SHARE OF INERTIAL MEASUREMENT UNIT MARKET IN 2021 52
4 PREMIUM INSIGHTS 53
4.1 ATTRACTIVE GROWTH OPPORTUNITIES IN INERTIAL MEASUREMENT UNIT MARKET 53
FIGURE 12 HIGH VOLUME PRODUCTION OF SMARTPHONES AND RISE IN AIRCRAFT DELIVERIES EXPECTED TO DRIVE MARKET FROM 2O21 TO 2026 53
4.2 INERTIAL MEASUREMENT UNIT MARKET, BY GRADE 53
FIGURE 13 COMMERCIAL GRADE SEGMENT PROJECTED TO LEAD MARKET FROM 2021 TO 2026 53
4.3 INERTIAL MEASUREMENT UNIT MARKET, BY TOP COUNTRIES 54
FIGURE 14 INERTIAL MEASUREMENT UNIT MARKET IN JAPAN PROJECTED TO REGISTER HIGHEST CAGR FROM 2021 TO 2026 54
5 MARKET OVERVIEW 55
5.1 INTRODUCTION 55
5.2 MARKET DYNAMICS 55
FIGURE 15 INERTIAL MEASUREMENT UNIT MARKET DYNAMICS 55
5.2.1 DRIVERS 56
5.2.1.1 High volume production of smartphones 56
TABLE 3 TOP FIVE SMARTPHONE MANUFACTURERS’ SHIPMENTS AND MARKET SHARE, 2019-2020 (MILLION UNITS) 56
5.2.1.2 Increased demand for missiles due to geopolitical instability and changing nature of warfare 56
TABLE 4 LIST OF ONGOING GEOPOLITICAL ISSUES AND CONFLICTS 57
5.2.1.3 Increasing demand for accuracy in navigation 57
5.2.1.4 Availability of miniaturized components at affordable prices 58
5.2.1.5 Rise in aircraft deliveries 58
FIGURE 16 AIRCRAFT DELIVERED BY BOEING AND AIRBUS, 2016−2021 58
5.2.2 RESTRAINTS 58
5.2.2.1 Operational complexities associated with high-end IMUs 58
5.2.2.2 Fluctuation in defense budgets of developed countries 59
TABLE 5 DEFENSE EXPENDITURE OF DEVELOPED COUNTRIES, 2011-2020 (USD BILLION) 59
5.2.3 OPPORTUNITIES 59
5.2.3.1 Booming VR and AR technologies 59
5.2.3.1.1 Penetration of AR/VR in multiple industries 60
5.2.3.1.2 Increased capital investments 60
5.2.3.2 Enhanced performance upon integration with other systems 60
5.2.3.3 Technological advancements in MEMS-based IMUs 61
5.2.3.4 Development of driverless vehicles 61
5.2.3.5 Growing demand for unmanned aerial vehicles 61
FIGURE 17 DRONE MARKET, 2017-2026 (USD MILLION) 62
5.2.4 CHALLENGES 62
5.2.4.1 Error propagation 62
5.2.4.2 Time required for system initialization 62
5.2.4.3 Restrictions in commercial use of drones 62
5.3 COVID-19 IMPACT SCENARIOS 63
FIGURE 18 RANGES AND SCENARIOS FOR INERTIAL MEASUREMENT UNIT MARKET 63
5.4 COVID-19 IMPACT ON INERTIAL MEASUREMENT UNIT MARKET 64
TABLE 6 COVID-19 IMPACT ON PASSENGER NUMBERS AND PASSENGER REVENUE 64
TABLE 7 COVID-19 IMPACT ON TABLET SHIPMENTS (MILLION UNITS) 65
5.5 TRENDS/DISRUPTIONS IMPACTING CUSTOMERS’ BUSINESS 65
5.5.1 ENHANCING UAVS PERFORMANCE BY USING INERTIAL MEASUREMENT UNIT 65
FIGURE 19 TRENDS AND DISRUPTIONS IMPACTING CUSTOMERS 65
5.6 MARKET ECOSYSTEM 66
5.6.1 PROMINENT COMPANIES 66
5.6.2 PRIVATE AND SMALL ENTERPRISES 66
5.6.3 END USERS 66
FIGURE 20 INERTIAL MEASUREMENT UNIT ECOSYSTEM 66
TABLE 8 INERTIAL MEASUREMENT UNIT MARKET ECOSYSTEM 67
5.7 PRICING ANALYSIS 68
5.7.1 COST OF INERTIAL MEASUREMENT UNIT USED FOR VARIOUS GRADES AND MANUFACTURERS OF IMUS 68
5.8 TARIFF REGULATORY LANDSCAPE FOR AEROSPACE INDUSTRY 68
5.8.1 TARIFF AND REGULATORY LANDSCAPE FOR CONSUMER ELECTRONICS 69
5.8.2 TARIFF AND REGULATORY LANDSCAPE FOR MARINE INDUSTRY 69
5.8.3 TARIFF AND REGULATORY LANDSCAPE FOR AUTOMOTIVE INDUSTRY 69
5.9 TRADE DATA 70
5.9.1 TRADE ANALYSIS 70
TABLE 9 COUNTRY-WISE EXPORTS, 2019-2020 (USD THOUSAND) 70
TABLE 10 COUNTRY-WISE IMPORTS, 2019-2020 (USD THOUSAND) 70
5.10 VALUE CHAIN ANALYSIS OF INERTIAL MEASUREMENT UNIT MARKET 71
FIGURE 21 VALUE CHAIN ANALYSIS 71
5.11 PORTER’S FIVE FORCES MODEL 73
FIGURE 22 PORTER’S FIVE FORCE ANALYSIS OF INERTIAL MEASUREMENT UNIT MARKET 73
TABLE 11 INERTIAL MEASUREMENT UNIT MARKET: PORTER’S FIVE FORCES ANALYSIS 73
5.11.1 THREAT OF NEW ENTRANTS 74
5.11.2 THREAT OF SUBSTITUTES 74
5.11.3 BARGAINING POWER OF SUPPLIERS 74
5.11.4 BARGAINING POWER OF BUYERS 74
5.11.5 COMPETITION IN THE INDUSTRY 74
5.12 TECHNOLOGY ANALYSIS 75
5.12.1 MEMS FOR CONSUMER & AUTOMOTIVE APPLICATIONS 75
5.13 USE CASE 75
5.13.1 SILICON MEMS BY SILICON SENSING SYSTEMS LIMITED 75
5.13.2 RUGGED IMUS BY HONEYWELL INTERNATIONAL INC. 75
5.14 OPERATIONAL DATA 76
TABLE 12 NEW COMMERCIAL AIRPLANE DELIVERIES, BY REGION, 2019-2038 76
TABLE 13 NUMBER OF SMARTPHONE USERS IN 2020, BY COUNTRY 76
TABLE 14 MOTOR VEHICLE PRODUCTION IN 2020, BY COUNTRY (MILLION UNITS) 77
5.15 AVERAGE SELLING PRICE 77
TABLE 15 AVERAGE SELLING PRICE: IMU, BY PLATFORM (USD MILLION) 77
5.16 VOLUME DATA 78
TABLE 16 IMU MARKET SIZE, BY PLATFORM (UNITS) 78
TABLE 17 IMU MARKET SIZE, BY PLATFORM (UNITS) 78
6 INDUSTRY TRENDS 79
6.1 INTRODUCTION 79
6.2 SUPPLY CHAIN ANALYSIS 79
FIGURE 23 SUPPLY CHAIN ANALYSIS 79
6.2.1 MAJOR COMPANIES 80
6.2.2 INERTIAL MEASUREMENT UNIT MANUFACTURERS 80
6.2.3 END USERS/CUSTOMERS 80
6.3 EMERGING INDUSTRY TRENDS 80
6.3.1 WIRELESS INERTIAL MEASUREMENT UNIT 81
6.3.2 GPS-AIDED INS 81
6.3.3 ADIRU 81
6.3.4 IMU FOR AR/VR 82
6.4 INNOVATIONS AND PATENTS REGISTRATIONS, 2011-2021 82
TABLE 18 INNOVATION AND PATENT REGISTRATION 82
6.5 IMPACT OF MEGATREND 83
6.5.1 HYBRID VTOL UAVS AND INERTIAL MEASUREMENT UNIT 83
6.5.2 INERTIAL MEASUREMENT UNIT FOR UNMANNED VEHICLES 83

7 INERTIAL MEASUREMENT UNIT MARKET, BY COMPONENT 84
7.1 INTRODUCTION 85
FIGURE 24 BY COMPONENT, GYROSCOPES SEGMENT PROJECTED TO LEAD MARKET DURING FORECAST PERIOD 85
TABLE 19 INERTIAL MEASUREMENT UNIT MARKET, BY COMPONENT,
2017–2020 (USD MILLION) 85
TABLE 20 INERTIAL MEASUREMENT UNIT MARKET, BY COMPONENT,
2021–2026 (USD MILLION) 86
7.2 ACCELEROMETERS 86
7.2.1 ACCELEROMETERS ARE USED TO MEASURE ACCELERATION INDUCED
BY FORCES ACTING IN ONE OR MULTIPLE DIRECTIONS. 86
7.3 GYROSCOPES 86
7.3.1 GYROSCOPES ARE SILICON-BASED SENSORS USED TO MEASURE ANGULAR VELOCITY IN THREE DIMENSIONS 86
7.4 MAGNETOMETERS 87
7.4.1 MAGNETOMETERS ARE USED IN IMUS TO DETECT DIRECTION OF MAGNETIC FIELD AT ANY POINT IN SPACE 87
7.5 OTHER SENSORS 87
7.5.1 PRESSURE SENSORS CAN BE USED TO MEASURE BAROMETRIC PRESSURE, ENABLING ACCURATE ALTITUDE MEASUREMENTS 87
8 INERTIAL MEASUREMENT UNIT MARKET, BY TECHNOLOGY 88
8.1 INTRODUCTION 89
FIGURE 25 BY TECHNOLOGY, MEMS SEGMENT PROJECTED TO LEAD MARKET DURING FORECAST PERIOD 89
TABLE 21 INERTIAL MEASUREMENT UNIT MARKET, BY TECHNOLOGY,
2017–2020 (USD MILLION) 89
TABLE 22 INERTIAL MEASUREMENT UNIT MARKET, BY TECHNOLOGY,
2021–2026 (USD MILLION) 90
8.2 MECHANICAL GYRO 90
8.2.1 INCREASING USAGE IN MARINE AND SUBMARINE PLATFORMS 90
8.3 RING LASER GYRO 90
8.3.1 RING LASER GYRO PRIMARILY USED IN MILITARY AIRCRAFT, MISSILES, SHIPS, AND SUBMARINES 90
8.4 FIBER OPTIC GYRO 90
8.4.1 FIBER OPTIC GYRO USED IN APPLICATIONS THAT REQUIRE HIGH RELIABILITY AND ACCURACY, SUCH AS SPACE, AIRCRAFT, AND MISSILE APPLICATIONS 90
8.5 MEMS 91
8.5.1 INCREASING USAGE IN TACTICAL GRADE PERFORMANCE APPLICATIONS 91
8.6 OTHERS 91
8.6.1 INCREASING USAGE IN SPACE APPLICATIONS AND MAINTENANCE-FREE MARINE GYROCOMPASSES, TARGET LOCATORS, AND NAVIGATION SYSTEMS 91

9 INERTIAL MEASUREMENT UNIT MARKET, BY GRADE 92
9.1 INTRODUCTION 93
FIGURE 26 BY GRADE, COMMERCIAL GRADE SEGMENT IS PROJECTED TO LEAD MARKET DURING FORECAST PERIOD 93
TABLE 23 INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 93
TABLE 24 INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 94
9.2 MARINE GRADE 94
9.2.1 MARINE GRADE SYSTEMS USED FOR ORIENTATION AND ACCURATE POSITIONING OF SHIPS 94
9.3 NAVIGATION GRADE 94
9.3.1 NAVIGATION GRADE SYSTEMS ARE COMBINED WITH GPS TECHNOLOGY FOR ACCURATE POSITIONING IN REAL-TIME 94
9.4 TACTICAL GRADE 95
9.4.1 TACTICAL GRADE IMUS ARE USED TO PROVIDE STANDALONE NAVIGATION SOLUTIONS FOR DEFENSE SECTOR 95
9.5 SPACE GRADE 95
9.5.1 SPACE GRADE IMUS ARE USED FOR SPACE NAVIGATION APPLICATIONS, WHICH REQUIRE HIGH ACCURACY, ESPECIALLY DURING HIGHLY DYNAMIC FLIGHT PHASES 95
9.6 COMMERCIAL GRADE 95
9.6.1 COMMERCIAL GRADE SYSTEMS ARE USED EXTENSIVELY IN UNDERWATER ROBOTIC VEHICLES, CONSUMER UAVS, AND AUTOMOBILES 95
10 INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM 96
10.1 INTRODUCTION 97
FIGURE 27 BY PLATFORM, CONSUMER ELECTRONICS SEGMENT PROJECTED TO LEAD MARKET DURING FORECAST PERIOD 97
TABLE 25 INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 98
TABLE 26 INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 98
10.2 AIRCRAFT 99
10.2.1 CIVIL AIRCRAFT 99
TABLE 27 IMU MARKET SIZE, BY CIVIL AIRCRAFT, 2017–2020 (USD MILLION) 99
TABLE 28 IMU MARKET SIZE, BY CIVIL AIRCRAFT, 2021–2026 (USD MILLION) 99
10.2.1.1 General aviation 99
10.2.1.1.1 Increased preference for cost-effective air travel for luxury and recreational activities to drive market growth 99
10.2.1.2 Commercial cargo/passenger aircraft 100
10.2.1.2.1 Growing air passenger traffic and replacement of aging aircraft by different airlines to drive market growth 100
10.2.1.3 Civil helicopters 100
10.2.1.3.1 Increasing demand for commercial helicopters to ensure efficient regional connectivity to drive market growth 100
10.2.2 MILITARY AIRCRAFT 100
TABLE 29 IMU MARKET SIZE, BY MILITARY AIRCRAFT, 2017–2020 (USD MILLION) 101
TABLE 30 IMU MARKET SIZE, BY MILITARY AIRCRAFT, 2021–2026 (USD MILLION) 101
10.2.2.1 Fighter aircraft 101
10.2.2.1.1 Increasing deliveries of fighter jets across regions to drive market growth 101
10.2.2.2 Military helicopters 101
10.2.2.2.1 Demand for military helicopters driven by procurement plans of emerging economies and rapidly evolving global geopolitical dynamics, which will, in turn, drive IMU market 101
10.2.2.3 Transport aircraft 102
10.2.2.3.1 IMU market to be comparatively low in transport carrier platform as budget cuts expected in developing countries 102
10.3 MISSILES 102
TABLE 31 IMU MARKET SIZE, BY MISSILES, 2017–2020 (USD MILLION) 102
TABLE 32 IMU MARKET SIZE, BY MISSILES, 2021–2026 (USD MILLION) 102
10.3.1 CRUISE MISSILES 103
10.3.1.1 Modern cruise missiles can fly at high speeds and are self-navigating with maximum precision 103
10.3.2 BALLISTIC MISSILES 103
10.3.2.1 Increasing tension across regions to increase ballistic missiles development, in turn, driving IMU market 103
10.4 SATELLITES/SPACE VEHICLES 103
TABLE 33 IMU MARKET SIZE, BY SATELLITES/SPACE VEHICLES,
2017–2020 (USD MILLION) 103
TABLE 34 IMU MARKET SIZE, BY SATELLITES/SPACE VEHICLES,
2021–2026 (USD MILLION) 104
10.4.1 CUBESAT 104
10.4.1.1 Increasing usage in Earth observation and amateur radio 104
10.4.2 SMALL SATELLITE 104
10.4.2.1 Increasing usage to gather scientific data and radio delay 104
10.4.3 MEDIUM SATELLITE 104
10.4.3.1 Increasing usage in observation, communication, and navigation 104
10.4.4 LARGE SATELLITE 105
10.4.4.1 Compared to small and medium-sized satellites, large satellites are not frequently launched or developed 105
10.5 MARINE VESSELS 105
TABLE 35 IMU MARKET SIZE, BY MARINE VESSELS, 2017–2020 (USD MILLION) 105
TABLE 36 IMU MARKET SIZE, BY MARINE VESSELS, 2021–2026 (USD MILLION) 105
10.5.1 COMMERCIAL 106
10.5.1.1 Increasing need for commercial ships by countries for logistical applications 106
10.5.2 DEFENSE 106
10.5.2.1 Increasing use for combat operations and as vessels for different vehicles 106
10.6 MILITARY VEHICLES 106
TABLE 37 IMU MARKET SIZE, BY MILITARY VEHICLES, 2017–2020 (USD MILLION) 106
TABLE 38 IMU MARKET SIZE, BY MILITARY VEHICLES, 2021–2026 (USD MILLION) 106
10.6.1 COMBAT VEHICLES 107
10.6.1.1 Increasing usage of IMUs in navigation, tracking, and self-propelled artillery 107
10.6.2 SUPPORT VEHICLES 107
10.6.2.1 Increasing usage in transportation of personnel and equipment 107
10.7 UAVS 107
TABLE 39 IMU MARKET SIZE, BY UAVS, 2017–2020 (USD MILLION) 107
TABLE 40 IMU MARKET SIZE, BY UAVS, 2021–2026 (USD MILLION) 108
10.7.1 COMMERCIAL UAVS 108
10.7.1.1 Increasing usage in wide range of consumer and enterprise-based applications 108
10.7.2 MILITARY UAVS 108
10.7.2.1 Increasing usage in tactical and ISR missions 108
10.8 UNMANNED GROUND VEHICLES (UGVS) 108
TABLE 41 IMU MARKET SIZE, BY UGVS, 2017–2020 (USD MILLION) 109
TABLE 42 IMU MARKET SIZE, BY UGVS, 2021–2026 (USD MILLION) 109
10.8.1 COMMERCIAL UGVS 109
10.8.1.1 Increasing usage for transportation and patrolling within enterprises 109
10.8.2 MILITARY UGVS 109
10.8.2.1 Increasing usage in ISR and related missions 109
10.9 UNMANNED MARINE VEHICLES (UMVS) 110
TABLE 43 IMU MARKET SIZE, BY UMVS, 2017–2020 (USD MILLION) 110
TABLE 44 IMU MARKET SIZE, BY UMVS, 2021–2026 (USD MILLION) 110
10.9.1 ROVS 110
10.9.1.1 Increasingly used in burying cables underwater and trenching 110
10.9.2 AUVS 111
10.9.2.1 Increasingly used to collect oceanographic data for extended periods with remote human supervision 111
10.9.3 USVS 111
10.9.3.1 Increasing usage in wide range of military and commercial applications 111
10.10 CONSUMER ELECTRONICS 111
TABLE 45 IMU MARKET SIZE, BY CONSUMER ELECTRONICS,
2017–2020 (USD MILLION) 111
TABLE 46 IMU MARKET SIZE, BY CONSUMER ELECTRONICS,
2021–2026 (USD MILLION) 111
10.10.1 SMARTPHONES 112
10.10.1.1 Increasing usage in motion sensing and indoor navigation 112
10.10.2 SMARTWATCHES 112
10.10.2.1 Need for motion tracking for fitness 112
10.10.3 OTHERS 112
10.10.3.1 Increasing developments in AR and VR applications 112
10.11 AUTOMOTIVE 112
TABLE 47 IMU MARKET SIZE, BY AUTOMOTIVE, 2017–2020 (USD MILLION) 112
TABLE 48 IMU MARKET SIZE, BY AUTOMOTIVE, 2021–2026 (USD MILLION) 112
10.11.1 COMMERCIAL VEHICLES 113
10.11.1.1 Increasingly used in driver assist and navigation 113
10.11.2 PASSENGER VEHICLES 113
10.11.2.1 Increasing usage in safety features 113
10.11.3 LAND SURVEY EQUIPMENT 113
10.11.4 INCREASING USAGE IN PLOT DIVISION AND CONSTRUCTION ACTIVITIES 113
10.12 ADVANCED AIR MOBILITY 113
10.12.1 INCREASING USAGE OF IMU AND OTHER SENSORS FOR STABILITY AND NAVIGATION 113
11 INERTIAL MEASUREMENT UNIT MARKET, BY END USER 114
11.1 INTRODUCTION 115
FIGURE 28 BY END USER, COMMERCIAL SEGMENT PROJECTED TO LEAD MARKET DURING FORECAST PERIOD 115
TABLE 49 INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 115
TABLE 50 INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 115
11.2 AEROSPACE & DEFENSE 116
11.2.1 IMUS USED FOR NAVIGATION, STABILITY, AND SAFETY PURPOSES 116
11.3 COMMERCIAL 116
11.3.1 IMUS USED EXTENSIVELY FOR ORIENTATION AND MOTION SENSOR APPLICATIONS 116
12 REGIONAL ANALYSIS 117
12.1 INTRODUCTION 118
FIGURE 29 ASIA PACIFIC ACCOUNTED FOR LARGEST SHARE OF INERTIAL MEASUREMENT UNIT MARKET IN 2021 118
TABLE 51 INERTIAL MEASUREMENT UNIT MARKET, BY REGION,
2017–2020 (USD MILLION) 119
TABLE 52 INERTIAL MEASUREMENT UNIT MARKET, BY REGION,
2021–2026 (USD MILLION) 119
12.2 NORTH AMERICA 119
FIGURE 30 NORTH AMERICA INERTIAL MEASUREMENT UNIT MARKET SNAPSHOT 120
12.2.1 PESTLE ANALYSIS: NORTH AMERICA 120
TABLE 53 NORTH AMERICA: INERTIAL MEASUREMENT UNIT MARKET, BY COUNTRY, 2017–2020 (USD MILLION) 122
TABLE 54 NORTH AMERICA: INERTIAL MEASUREMENT UNIT MARKET, BY COUNTRY, 2021–2026 (USD MILLION) 122
TABLE 55 NORTH AMERICA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER, 2017–2020 (USD MILLION) 122
TABLE 56 NORTH AMERICA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER, 2021–2026 (USD MILLION) 122
TABLE 57 NORTH AMERICA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2017–2020 (USD MILLION) 123
TABLE 58 NORTH AMERICA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2021–2026 (USD MILLION) 123
TABLE 59 NORTH AMERICA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE, 2017–2020 (USD MILLION) 124
TABLE 60 NORTH AMERICA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE, 2021–2026 (USD MILLION) 124
12.2.2 US 124
12.2.2.1 Presence of major players drive US market 124
TABLE 61 US: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 125
TABLE 62 US: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 125
TABLE 63 US: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 125
TABLE 64 US: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 126
TABLE 65 US: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 126
TABLE 66 US: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 126
12.2.3 CANADA 127
12.2.3.1 Rise in consumer electronics and aerospace modernization programs to drive market growth 127
TABLE 67 CANADA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 127
TABLE 68 CANADA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 127
TABLE 69 CANADA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 128
TABLE 70 CANADA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 128
TABLE 71 CANADA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 129
TABLE 72 CANADA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 129
12.3 EUROPE 129
FIGURE 31 EUROPE INERTIAL MEASUREMENT UNIT MARKET SNAPSHOT 130
12.3.1 PESTLE ANALYSIS: EUROPE 130
TABLE 73 EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY COUNTRY,
2017–2020 (USD MILLION) 131
TABLE 74 EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY COUNTRY,
2021–2026 (USD MILLION) 132
TABLE 75 EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 132
TABLE 76 EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 132
TABLE 77 EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 133
TABLE 78 EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 133
TABLE 79 EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 134
TABLE 80 EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 134
12.3.2 GERMANY 134
12.3.2.1 Investments in megatrends to drive market growth 134
TABLE 81 GERMANY: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 134
TABLE 82 GERMANY: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 135
TABLE 83 GERMANY: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 135
TABLE 84 GERMANY: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 136
TABLE 85 GERMANY: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 136
TABLE 86 GERMANY: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 137
12.3.3 UK 137
12.3.3.1 Technological advancements in aerospace, smartphone, and industrial markets to drive growth of IMU market 137
TABLE 87 UK: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 137
TABLE 88 UK: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 137
TABLE 89 UK: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 138
TABLE 90 UK: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 138
TABLE 91 UK: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 139
TABLE 92 UK: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 139
12.3.4 FRANCE 139
12.3.4.1 Heavy investments in aerospace to drive market 139
TABLE 93 FRANCE: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 140
TABLE 94 FRANCE: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 140
TABLE 95 FRANCE: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 140
TABLE 96 FRANCE: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 141
TABLE 97 FRANCE: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 141
TABLE 98 FRANCE: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 141
12.3.5 ITALY 142
12.3.5.1 High demand for civil and corporate helicopters to drive market 142
TABLE 99 ITALY: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 142
TABLE 100 ITALY: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 142
TABLE 101 ITALY: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 142
TABLE 102 ITALY: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 143
TABLE 103 ITALY: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 143
TABLE 104 ITALY: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 143
12.3.6 RUSSIA 144
12.3.6.1 Increase in military budget to manufacture advanced aircraft to drive market 144
TABLE 105 RUSSIA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 144
TABLE 106 RUSSIA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 144
TABLE 107 RUSSIA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 145
TABLE 108 RUSSIA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 145
TABLE 109 RUSSIA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 146
TABLE 110 RUSSIA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 146
12.3.7 REST OF EUROPE 146
12.3.7.1 Increasing initiatives to strengthen aviation sector and passenger experience to drive market growth 146
TABLE 111 REST OF EUROPE: INERTIAL MEASUREMENT UNIT MARKET,
BY END USER, 2017–2020 (USD MILLION) 147
TABLE 112 REST OF EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY END USER, 2021–2026 (USD MILLION) 147
TABLE 113 REST OF EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2017–2020 (USD MILLION) 147
TABLE 114 REST OF EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2021–2026 (USD MILLION) 148
TABLE 115 REST OF EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE, 2017–2020 (USD MILLION) 148
TABLE 116 REST OF EUROPE: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE, 2021–2026 (USD MILLION) 149

12.4 ASIA PACIFIC (APAC) 149
FIGURE 32 ASIA PACIFIC INERTIAL MEASUREMENT UNIT MARKET SNAPSHOT 150
12.4.1 PESTLE ANALYSIS: ASIA PACIFIC 150
TABLE 117 ASIA PACIFIC: INERTIAL MEASUREMENT UNIT MARKET, BY COUNTRY,
2017–2020 (USD MILLION) 151
TABLE 118 ASIA PACIFIC: INERTIAL MEASUREMENT UNIT MARKET, BY COUNTRY,
2021–2026 (USD MILLION) 152
TABLE 119 ASIA PACIFIC: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 152
TABLE 120 ASIA PACIFIC: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 152
TABLE 121 ASIA PACIFIC: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2017–2020 (USD MILLION) 153
TABLE 122 ASIA PACIFIC: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2021–2026 (USD MILLION) 153
TABLE 123 ASIA PACIFIC: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 154
TABLE 124 ASIA PACIFIC: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 154
12.4.2 CHINA 154
12.4.2.1 Growth in manufacturing of consumer electronics to drive market 154
TABLE 125 CHINA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 154
TABLE 126 CHINA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 155
TABLE 127 CHINA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 155
TABLE 128 CHINA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 156
TABLE 129 CHINA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 156
TABLE 130 CHINA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 156
12.4.3 JAPAN 157
12.4.3.1 Increased technological advancements to drive market growth 157
TABLE 131 JAPAN: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 157
TABLE 132 JAPAN: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 157
TABLE 133 JAPAN: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 158
TABLE 134 JAPAN: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 158
TABLE 135 JAPAN: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 159
TABLE 136 JAPAN: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 159
12.4.4 INDIA 159
12.4.4.1 Five-year modernization plan for armed forces to drive market 159
TABLE 137 INDIA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 160
TABLE 138 INDIA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 160
TABLE 139 INDIA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 160
TABLE 140 INDIA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 161
TABLE 141 INDIA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 161
TABLE 142 INDIA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 161
12.4.5 SOUTH KOREA 162
12.4.5.1 Growth in automobile manufacturing and advancements in UAM ecosystem to drive market growth 162
TABLE 143 SOUTH KOREA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER, 2017–2020 (USD MILLION) 162
TABLE 144 SOUTH KOREA: INERTIAL MEASUREMENT UNIT MARKET, BY END USER, 2021–2026 (USD MILLION) 162
TABLE 145 SOUTH KOREA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2017–2020 (USD MILLION) 163
TABLE 146 SOUTH KOREA: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2021–2026 (USD MILLION) 163
TABLE 147 SOUTH KOREA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 164
TABLE 148 SOUTH KOREA: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 164
12.4.6 REST OF APAC 164
12.4.6.1 Replacing aging aircraft fleet and establishment of AAM ecosystem to drive market 164
TABLE 149 REST OF APAC: INERTIAL MEASUREMENT UNIT MARKET, BY END USER, 2017–2020 (USD MILLION) 165
TABLE 150 REST OF APAC: INERTIAL MEASUREMENT UNIT MARKET, BY END USER, 2021–2026 (USD MILLION) 165
TABLE 151 REST OF APAC: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2017–2020 (USD MILLION) 165
TABLE 152 REST OF APAC: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM, 2021–2026 (USD MILLION) 166
TABLE 153 REST OF APAC: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 166
TABLE 154 REST OF APAC: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 166
12.5 REST OF THE WORLD (ROW) 167
TABLE 155 REST OF THE WORLD: INERTIAL MEASUREMENT UNIT MARKET, BY COUNTRY, 2017–2020 (USD MILLION) 167
TABLE 156 REST OF THE WORLD: INERTIAL MEASUREMENT UNIT MARKET, BY COUNTRY, 2021–2026 (USD MILLION) 167
TABLE 157 REST OF THE WORLD: INERTIAL MEASUREMENT UNIT MARKET, BY END USER, 2017–2020 (USD MILLION) 167
TABLE 158 REST OF THE WORLD: INERTIAL MEASUREMENT UNIT MARKET, BY END USER, 2021–2026 (USD MILLION) 167
TABLE 159 REST OF THE WORLD: INERTIAL MEASUREMENT UNIT MARKET,
BY PLATFORM, 2017–2020 (USD MILLION) 168
TABLE 160 REST OF THE WORLD: INERTIAL MEASUREMENT UNIT MARKET,
BY PLATFORM, 2021–2026 (USD MILLION) 168
TABLE 161 REST OF THE WORLD: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE, 2017–2020 (USD MILLION) 169
TABLE 162 REST OF THE WORLD: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE, 2021–2026 (USD MILLION) 169
12.5.1 BRAZIL 169
12.5.1.1 Increasing adoption and developments in establishing AAM ecosystem to drive market growth 169
TABLE 163 BRAZIL: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 169
TABLE 164 BRAZIL: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 170
TABLE 165 BRAZIL: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 170
TABLE 166 BRAZIL: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 171
TABLE 167 BRAZIL: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 171
TABLE 168 BRAZIL: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 171
12.5.2 ISRAEL 172
12.5.2.1 Increasing government spending to drive market growth 172
TABLE 169 ISRAEL: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2017–2020 (USD MILLION) 172
TABLE 170 ISRAEL: INERTIAL MEASUREMENT UNIT MARKET, BY END USER,
2021–2026 (USD MILLION) 172
TABLE 171 ISRAEL: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2017–2020 (USD MILLION) 173
TABLE 172 ISRAEL: INERTIAL MEASUREMENT UNIT MARKET, BY PLATFORM,
2021–2026 (USD MILLION) 173
TABLE 173 ISRAEL: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2017–2020 (USD MILLION) 174
TABLE 174 ISRAEL: INERTIAL MEASUREMENT UNIT MARKET, BY GRADE,
2021–2026 (USD MILLION) 174
13 COMPETITIVE LANDSCAPE 175
13.1 INTRODUCTION 175
13.2 MARKET SHARE ANALYSIS, 2020 175
TABLE 175 DEGREE OF COMPETITION 175
FIGURE 33 MARKET SHARE OF TOP PLAYERS IN INERTIAL MEASUREMENT UNIT MARKET, 2020 (%) 176
FIGURE 34 REVENUE ANALYSIS OF TOP 5 MARKET PLAYERS, 2020 177
13.3 COMPANY EVALUATION QUADRANT 178
13.3.1 STAR 178
13.3.2 EMERGING LEADER 178
13.3.3 PERVASIVE 178
13.3.4 PARTICIPANT 178
FIGURE 35 INERTIAL MEASUREMENT UNIT MARKET COMPETITIVE LEADERSHIP MAPPING, 2020 179
13.4 STARTUP EVALUATION QUADRANT 180
13.4.1 PROGRESSIVE COMPANIES 180
13.4.2 RESPONSIVE COMPANIES 180
13.4.3 DYNAMIC COMPANIES 180
13.4.4 STARTING BLOCKS 180
FIGURE 36 INERTIAL MEASUREMENT UNIT MARKET STARTUPS/SME COMPETITIVE LEADERSHIP MAPPING, 2020 181
TABLE 176 COMPANY PRODUCT FOOTPRINT 182
TABLE 177 COMPANY FOOTPRINT, BY GRADE 183
TABLE 178 COMPANY FOOTPRINT, BY END USER 184
TABLE 179 COMPANY REGION FOOTPRINT 185
13.5 COMPETITIVE SCENARIO 186
13.5.1 DEALS 186
TABLE 180 DEALS, 2017–2021 186
13.5.2 PRODUCT LAUNCHES 191
TABLE 181 PRODUCT LAUNCHES, 2017–2021 191